

November 9-15, 2019 An-Najah N. University, Nablus, Palestine

Detection of gravitational waves

- → Gravitational-wave detectors
- → LIGO-Virgo detector network
- → Signal extraction methods
- → Detector's noise

Florent Robinet Laboratoire de l'Accélérateur Linéaire

robinet@lal.in2p3.fr

2

LIGO Livingston, USA

Add a small perturbation to the Minkowski metric: $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

 $|h_{\mu\nu}| \ll 1$

- -h obeys a plane-wave equation
- the wave propagates at the speed of light
- 2 degrees of freedom: h_+ and h_X

When they propagate, gravitational waves

- do not interact with matter
- are attenuated by 1/r
 - → Gravitational waves are the perfect probe!
 - → BUT... h~10⁻²¹

L

Operation: set output on a dark fringe

$$P_{output}(t) \simeq \frac{P_{input}}{2} [1 + C\cos(\delta\phi_{OP}) - C\sin(\delta\phi_{OP}) \times \delta\phi_{GW}(t)]$$

 \rightarrow A gravitational wave is detected as a power variation

Sensitivity limited by noise

The detector's sensitivity to h is limited by noise

For example: shot noise due to uncertainty in photon counting rate

$$N_{photon} \propto P_{output} \rightarrow \delta N_{photon} \propto \sqrt{N_{photon}} \rightarrow \delta P_{shot noise} \propto \sqrt{P_{output}}$$

Signal-to-noise ratio

$$\frac{S}{B} = \frac{\delta P_{GW}}{\delta P_{shot noise}} \propto L \sqrt{P_{input}} h$$

If $\frac{S}{B} = 1 \rightarrow h_{shot noise} \propto \frac{1}{L \sqrt{P_{input}}}$

Table-top Michelson interferometer $\rightarrow 10^{-17}$ Astrophysical sources $\rightarrow 10^{-21}$

Boosting the sensitivity

$$\delta P_o = G_{PR} P_i C \frac{2\pi}{\lambda} \sin\left(\frac{4\pi}{\lambda} \Delta L_0\right) \frac{2F}{\pi} \delta \Delta L$$

Typical shot noise at 50 mW:

$$\delta P_{shot} \sim 0.1 \, nW$$
$$\delta \Delta L \sim 5 \times 10^{-20} \, m$$

Strain amplitude (reconstruction)

$$h = \frac{\delta \Delta L}{L_0} \sim 10^{-23}$$

$$\lambda = 1064 nm$$

$$P_i = 100 W$$

$$\Delta L_0 = 10^{-11} m$$

$$F = 450$$

$$C = 1$$

$$G_{PR} = 38$$

In reality the reconstruction is frequency dependent

Lock control

The detector's mirrors must be "controlled" to lock and maintain the cavities at resonance

Lock control

The detector's mirrors must be "controlled" to lock and maintain the cavities at resonance

Lock control

The detector's mirrors must be "controlled" to lock and maintain the cavities at resonance

Sky coverage

The detector's sensitivity over the sky is not uniform

$$h_{det}(t) = F_{+}(\underline{t, ra, dec}, \underline{\Psi}) \times h_{+}(t) + F_{x}(t, ra, dec, \Psi) \times h_{x}(t)$$

Source position

Source polarization angle

Gravitationl-wave data

GW detectors' readout system provides at any instant an estimate of strain: a quantity that is sensitive to arms' length difference:

 \rightarrow Digitized discrete time series: raw(t) (sampled at 16384 Hz or 20000 Hz) and synchronized with GPS clocks.

 \rightarrow Calibration of raw(t): apply a frequency dependent factor [in reality this is a bit more complicated ...]

 \rightarrow h_{det}(t) time series that is detector noise plus all hypothetical GW signals

$$h_{det}(t) = n(t) + GW(t)$$

Power spectral density

Fourier transform

A time series s(t) can be projected over a basis of sinusoidal functions: $\widetilde{s}(f) = \int_{-\infty}^{\infty} s(t)e^{-2i\pi ft} dt$ (forward) $s(t) = \int_{-\infty}^{\infty} \widetilde{s}(f)e^{2i\pi ft} df$ (backward) The signal is decomposed in characteristic frequencies

A noise source n(t) limiting the extraction of a signal s(t) is completely characterized by the power (amplitude) spectral density $S_n(f)$

 $S_n(f) = 2|\widetilde{n}(f)|^2 \qquad A_n(f) = \sqrt{S_n(f)}$

Detector sensitivity

LIGO-Virgo sensitivity – 2017

+ technical noise (environment, scattered light, control...)

Data whitening

GW data must be whitened. Several methods are used :

- reweighting of frequency bins
- linear prediction

 \rightarrow white noise is mandatory for statistical interpretation of the data

Scientific runs

Data analysis :

- O1 : ~ 50 days of data, 2 detectors
- O2 : ~100 days of data, 2(+1) detectors O3 : ~200 days of data, 3 detectors

Working with a network of detectors is mandatory to perform a coincident search to test the signal consistency across the network to estimate your background noise to locate the source of gravitational waves

TOA (Hanford)

TOA (Livingston)

GW

TOA (Virgo)

The direction of the source is triangulated using the signal times of arrival → Follow-up in other channels (e.g. EM) What localization to expect if the signal is detected by only 2 detectors?

TOA (Hanford)

TOA (Livingston)

GW

22

Source classification: search method

Signal duration in the detector's bandwidth

Source classification: search method

Signal duration in the detector's bandwidth

Source classification: search method

Signal duration in the detector's bandwidth

Unmodeled searches

- \rightarrow Time-frequency decomposition \rightarrow noise events + (maybe) GW events
- → Coincidence between detectors (time + other parameters)
- → Noise rejection
- → Classify events using a "smart" recipe
- → Estimate background
- \rightarrow Compare events with your background
- \rightarrow Measure the probability for each events to be true GW signal

Output power

Data is calibrated \rightarrow GW strain amplitude h(t)(including high-pass filter f > 10 Hz)

Data are low-pass filtered (here, < 500 Hz)

Data are whitened

Time [s]

Time-frequency decomposition (Short Fourier transforms) $X(\tau,\phi,Q) = \int_{-\infty}^{+\infty} h_{det}(t) w(t-\tau,\phi,Q) e^{-2i\pi\phi\tau} dt$

Modeled search

Theoretical input:

- 90s: CBC PN waveforms (Blanchet, Iyer, Damour, Deruelle, Will, Wiseman, ...)
- 00s: CBC Effective One Body "EOB" (Damour, Buonanno)
- 06: BBH numerical simulation (Pretorius, Baker, Loustos, Campanelli)

The intrinsic waveform parameters:

- Masses:

$$M_{tot} = M_1 + M$$

- Spins and orbital angular momentum:

2

$$\vec{S_{tot}} = \vec{S}_1 + \vec{S}_2 + \vec{J}$$

The waveform models used for the search:

- Inspiral, PN3.5 for $M_{tot} < 4 M_{sun}$
- Inspiral/Merger/Ringdown EOB + numerical relativity for $M_{tot} > 4 M_{sun}$
- Spins and orbital angular momentum are aligned

Template bank \rightarrow match-filtering technique

Match filtering

Match filtering

$$\rho_{c}(t) = 4 \Re \left[\int_{0}^{\infty} \underbrace{\widetilde{h}(f) \widetilde{h}_{c}^{\star}(f)}_{S_{n}(f)} e^{2i\pi f t} df \right]$$

A signal-to-noise ratio (SNR) is computed for each template

Match filtering

$$\rho_{c}(t) = 4 \Re \left[\int_{0}^{\infty} \underbrace{\widetilde{h}(f) \widetilde{h}_{c}^{\star}(f)}_{S_{n}(f)} e^{2i\pi f t} df \right]$$

A signal-to-noise ratio (SNR) is computed for each template

- A list of events is produced:
- start/end/peak times
- SNR
- template parameters (masses, spins)

Now the challenge is to reject noise events to better isolate true signals

Single-detector triggers

- A list of events is produced:
- start/end/peak times
- SNR
- template parameters (masses, spins)

Now, the challenge is to reject noise events to better isolate true signals

The noise distribution is highly non-Gaussian !

Single-detector noise

Single-detector noise

Thousands of auxiliary channels are used to monitor the instruments

- environmental sensors
- detector sub-systems
- detector control

Noise injection campaigns are conducted to identify the detector's response to different noise stimulation

Multiple transient noises were identified during the run

- → Anthropogenic noise
- \rightarrow Earthquakes
- \rightarrow Radio-frequency modulation
- $\rightarrow \dots$

Option #1: fix the detector Option #2: remove transient events in the data

Output port (dark fringe)

42

SNR

10

1

43

Rejecting noise

Multi-detectors coincidence

A gravitational-wave signal is detected by multiple detectors almost simultaneously

Coincidence rate: $R_{coinc} \sim R_H R_L \Delta t_{win}$ $\sim (1 Hz) \times (1 Hz) \times (10^{-2} s) = 10^{-2} Hz$

Multi-detectors coincidence

The background of a gravitational-wave search is estimated using the time-slide technique Assumption = uncorrelated noise between detectors

A very large number of fake experiments can be simulated using multiple offsets

LIGO O1 analysis: - O(10⁶) time offsets

→ background estimated using a fake experiment of O(100,000 years)

Event significance

Event significance

48

Correlated noise

Schumann resonance

LIGO-Hanford magnetometer

LIGO-Livingston magnetometer

944696230 944696231 944696232 944696233 944696234 Loudest: GPS#944696231.588, fs12.256 Hz, snrs121.365 Time [s]

Conclusions

- → First detection achieved by ground-based interferometers (LIGO-Virgo)
- \rightarrow A network of detectors is needed
 - to detect a gravitational-wave with confidence
 - to localize the source
 - to estimate the parameters of the source
- \rightarrow Analysis pipelines are used to analyze the data
- \rightarrow Gravitational-wave detectors are very sensitive instruments
- \rightarrow Multiple noise sources