Cosmic Rays

II The origin of cosmic rays

Where is the cosmic "LHC"?

- Since the early days, cosmic ray physicists are struggling to explain the mechanisms for accelerating particles up to such high energies
- Models accounting for production and propagation of cosmic rays should reproduce the non-trivial hints from cosmic phenomenology:
 - The power-law energy spectrum and its high-energy variations
 - The relative abundances of different nuclei and the astrophysical observations

Cosmic Rays from the Sun?

Stars in the "main sequence" like our Sun are nuclear reactors where hydrogen is burning through a well understood chain of reactions. For the Sun (and "light" stars) the main process is the *pp* chain

- □ The only escaping particles are neutrinos with E<20 MeV
- □ Clearly not the source of high energy cosmic rays

Cosmics from the Sun: the Solar Wind

- Temperature in the Sun's corona can reach 1 MK and particles with energies ~ 1 keV can escape Sun's gravity and produce the so-called **solar wind**. Clearly visible from the tails of comets
- Directly observed with inter-planetary probes (Voyager missions)
 @1AU: Plasma (e,p,He ions) 9 particles/cm-3 flux speed ~350 km/s thermal spectrum Tp ~ 4104 K

B field ~ 4 nT

- Interacts with Earth's magnetic field.
 Varying solar activity (e.g. flares) can cause auroras (particles entering atmosphere at the poles)
- Through its magnetic field, modifies CR spectra up to 10 GeV !

Cosmics from the Sun: Sunspots and Flares

- Sunspots are regions with strong magnetic activity
- Magnetic energy is sometime released suddenly into Solar flares (with or without coronal mass ejection)
- Particles can be accelerated up to 1 GeV energy
- Flares toward the Earth can cause magnetic storms and bright auroras

Cosmics from the Sun: Neutrinos!

Charged-Current

Neutral-Current

neutrino

٧x

neutrino

n

deuteron

deuteron

- The solar neutrino flux can be predicted from the Standard Solar Model
- First detection performed by the Chlorine experiment in the 1960s, rate of charged-current neutrino events found to be less than half of the expected one...
- Puzzle solved in 2002 by the detection of neutral current events (sensitive to all flavours) by the SNO experiment: the total neutrino flux was found to be compatible with predictions, deficit of v_e charged-current events explained through neutrino flavour oscillations

Looking for a 10^{20} eV accelerator

First idea: the Fermi acceleration (1949)

- Stochastic effect of interactions of charged particles with moving large clouds of ionized gas with varying magnetic fields
- □ In cloud frame energy is conserved and motion is random:

$$E_2' = E_1' \qquad \langle \cos \theta_2' \rangle = 0$$

In "lab" frame

$$\gamma = \frac{1}{\sqrt{1-\beta^2}} \quad \beta = \frac{V}{c}$$
$$E_1' = \gamma E_1 (1-\beta\cos\theta_1)$$

$$E_2 = \gamma E_2' (1 + \beta \cos \theta_2')$$
$$\langle \cos \theta_1 \rangle = \int \cos \theta_1 \frac{dP}{d\Omega_1} d\Omega_1 / \int \frac{dP}{d\Omega_1} d\Omega_1 = -\frac{\beta}{3}$$

- Net energy increase (on average) at each random crossing
- But energy conversion is inefficient: $β \sim 10^{-4}$ in actual nebulae

Spectrum from Fermi acceleration

Is particle makes n crossings with $\langle \Delta E/E \rangle = \epsilon$, average energy increase will be

$$E = E_0 \cdot (1+\epsilon)^n \quad \Rightarrow \quad n = \frac{\ln(E/E_0)}{\ln(1+\epsilon)}$$

If P_{esc} is the probability to escape the acceleration region, the number of particles with energy larger than E is

$$N(\geq E) = N_0 \cdot (1 - P_{esc})^n \quad \Rightarrow \quad n = rac{\mathrm{Im}(N/N_0)}{\mathrm{ln}(1 - P_{esc})}$$
 $\Rightarrow \quad rac{N}{N_0} = \left(rac{E}{E_0}
ight)^{-\gamma+1}$
 $rac{dN}{dE} \propto E^{-\gamma} \qquad \gamma = 1 - rac{\mathrm{ln}(1 - P_{esc})}{\mathrm{ln}(1 + \epsilon)} \sim 1 + rac{P_{esc}}{\epsilon}$

 \Rightarrow The energy spectrum follows a power-law with spectral index γ

Power of cosmic accelerators

Energy density of cosmic rays

$$\rho_{\rm CR} = \int dE \ E_k n(E) = 4\pi \int dE \ \frac{E_k}{v} I(E) \sim 1 \,\mathrm{eV/cm^3}$$

Volume of the Galactic disk

 $V_D = \pi R^2 h \sim 4 \times 10^{66} \,\mathrm{cm}^3$

Typical CR lifetime $\tau^{esc} = 10^7$ years (see later)

for comparison: power of the Sun ~ 4 10²⁶ W)

Few astrophysical phenomena can release such energies as high-energy particles, SuperNova (SN) explosion is the main suspect

Historical observations of SN explosions

- **SN185** first (clearly) recorded SN event by Chinese astronomers
- SN1006 probably the brightest SN events seen in human history, documented among others by Ali Ibn Ridwan

- "was a large circular body, $2\frac{1}{2}$ to 3 times as large as Venus. The sky was shining because of its light. The intensity of its light was a little more than a quarter that of Moon light"
- was visible for 3 months, only 2.2 kpc from us!
- SN1572 observed by Tycho Brae
- SN1604 observed by Kepler, latest event visible by naked eye in the Milky Way ____

SN1006 today: remnant in the Lupus, discovered in 1965

SN1987a the brightest SN observed with modern instruments

SN facts

- Despite the name (Nova=new), SN explosion marks the end of life of a star, when the nuclear fuel is exhausted and the gravitational potential energy is released
- □ Within our galaxy, we expect one event every ~30 year
- But we now observe hundreds events/year from other galaxies
- ❑ The explosion produces a SuperNova Remnant (SNR): "bubble" expanding for ~ 50 ky reaching sizes of ~ 50 ly
- □ In the initial expansion, a shock wave propagates at supersonic speed (up to 10⁴ km/s), sweeping the interstellar medium

Shock waves in SN remnants

- Fermi's stochastic acceleration occurs at the front of the shock wave: **diffusive shock acceleration**
- When crossing the wave front, particles scatter with a high-density magnetized gas and can bounce back multiple times
- □ Kinetic theory of gas for supersonic shocks in a monoatomic gas: relative velocity between shocked and unshocked gas is V= $\frac{3}{4}$ u₁ where u₁ is the shock wave speed ~ 10⁴ Km/s
- More efficient acceleration wrt to randomly distributed clouds, due to the coherence of the moving wave

Power and Maximum Energy

- Typical SNR shock energy release: 10⁴⁴ J
- □ Power for 1 event every 30 y is thus $P_{SNR} = 10^{44} \text{J} / (30 \cdot \pi \cdot 10^7 \text{ s}) \sim 10^{35} \text{ W}$

Enough to power CRs with 2% of acceleration efficiency!

 The maximum particle energy is limited by the SNR size *L* (few ly) nd magnetic field *B* (few µG): particles can't be contained if *L* is smaller that the gyroradius

$$r_L \equiv \frac{p_\perp}{ZeB}$$

Estimated maximum for SNR is

$$E_{max} \sim 300 \cdot Z \cdot \text{TeV}$$

plausible explanation for the knee!

Other candidate acceleration sites

- In general, size and magnetic field of possible acceleration sites determines the maximum energy: Hillas plot
- s is the acceleration efficiency
- Active Galactic Nuclei (black holes with spinning accretion disks at the galaxy centers) are among the possible sites capable to explain 10²⁰ eV

Propagation of cosmic rays

- Containment of cosmic rays within the Galaxy is due to magnetic fields
- Before reaching the Earth, cosmic particles can
 - escape the Galaxy
 - interact with the Inter Stellar Medium:
 - B field (~ 1 μG): diffusion
 - Gas: ~1 nucleon/cm³ (90% H, 10% He)
 - nuclei produce lighter species by spallation
 - energy loss by radiation
 - decay (if unstable)

gyroradius r_L at relativistic speed : $r_L/(1\,{\rm m}) \sim 3.3/Z \cdot E/(1\,{\rm GeV}) \cdot (1\,{\rm T})/B$ $r_L/(1 \,\mathrm{kpc}) \sim 1/Z \cdot E/(1 \,\mathrm{EeV}) \cdot (1 \,\mu\mathrm{G})/B$ extragalactic infall clear interact energy loss orbit of earth (1AU) radioactive deca heliosphere (50-100AU)

Transport equations

Set of coupled differential equation for each species i ∂n_i $q_i + \nabla \cdot \left(\hat{k} \nabla n_i - u n_i\right) - p_i n_i + \sum p_{k \to i} n_k - \frac{\partial}{\partial E} (b_i n_i)$ ∂t Sources Diffusion Energy variations: Loss and production and Convection ionization losses, $n_i(E,r,t)$ is the through interactions radiation, CR density and decay reacceleration

 $b_i = b_i(E, t) = \frac{dE}{dE}$

- Can be solved numerically through simulation codes (e.g. GALPROP), taking into account realistic distribution of sources, magnetic field maps, etc.
- Diffusion parameters and amount of crossed interstellar gas (related to time of survival in the galaxy) are obtained from fits to experimental data

Main features of the propagation reproduced by a simple model assuming stationary and uniform density where sources are compensated by losses ("leaky box" model). The only free parameter is the escape time T_{esc} (*E*,*Z*)
 For each species, losses depend on the interaction length λ_p = m_g/σ_i and the escape length λ_{esc} = m_g n_g v T_{esc} which is the average crossed matter (m_g n_g mass and density of inter-stellar gas)

Measuring escape time with secondaries

- □ Solving the diffusion equation one expects τ_{esc} of order 10⁷ years and $\tau_{esc} \propto E^{-\delta}/Z$
- Unstable secondary nuclei with lifetime ~ τ_{esc} can be used as "cosmic ray clocks", e.g.

10
Be ($\tau \sim 2.2$ Myr), 26 Al ($\tau \sim 1.2$ Myr)

by measuring their relative abundances wrt the stable isotopes

Secondary/primary for stable nuclei, e.g. B/C can be used to determine λ_{esc}

Secondary/primary ratio

- **Q** Result is $\delta \sim 0.6$
- High-energy protons have $\lambda_P >> \lambda_{esc}$, so their spectra is simply $N_P(E) = Q_P(E) \tau_{esc}(E) \propto E^{-\gamma} E^{-\delta} \sim E^{-2.6}$

Extragalactic CR: the GZK cutoff

The highest CR reaching the Earth are expected to have escaped from galaxies containing powerful CR sources, propagating in the inter-galactic medium

	B-field	Gas density
Galactic space	~ 1 µG	~ 1 nucleon/cm ³
Inter-galactic space	10 ⁻⁹ - 10 ⁻¹⁵ G	~ 1-10 nucleon/m ³

- Energy is limited by interactions with Cosmic Microwave Background as realized in 1966 by Greisen, Zatsepin and Kuzmin (GZK)
- $\Box \quad \text{Threshold for the process} \quad p \ \gamma_{CMB} \to \Delta^+ \to p \ \pi^0 \ (n \ \pi^+)$

is 6 10^{19} eV and the corresponding mean free path is ~ 10 Mpc

A cutoff in the spectrum is thus expected, the detailed shape depends on the CR composition and the distance from the sources

The experimental challenge

- Models of CR acceleration in SNR and propagation provide a picture consistent with the experimental observations, but not yet fully proved
- Many large experimental efforts ongoing to turn cosmic ray physics into precision science:
 - experiments in Space are accessing spectrum and composition of charged particles up to the TeV scale;
 - □ **large detector arrays** studying atmospheric showers at the highest energies: composition above the knee is particularly relevant to test models and is still poorly known;
 - direct observation of possible acceleration sites is becoming possible though neutral messenger: gamma and neutrino observatory;
 - **c**ross-section measurements at **accelerators** complement these studies
- □ More precise understanding of **astrophysical** mechanisms improve
- sensitivity to unexpected contributions, e.g. dark matter annihilation possible new inputs to particle physics