The Standard Model of particle physics

Marie-Hélène Schune Achille Stocchi
LAL-Orsay IN2P3/CNRS

- Introduction
- Few concepts
- The electromagnetic interaction (QED)
- The strong interaction
- The weak interaction
- Wrapping up (the Standard Model)
- And now?

Introduction

electron
$<10^{-16} \mathrm{~cm}$

proton
(neutron)

The world we're talking about is a microscopic

Thompson experiment
m / e for electrons

Determination of the nature charge quantum Millikan experiment electric of the electron

Today
$-e=1.602176462(63) 10^{-19} \mathrm{C}$

- $m=9.10938188(72) 10^{-31} \mathrm{~kg}$

$1 \mathrm{eV}=$ energy acquired by an electron feeling a potential difference of $1 \mathrm{~V} 1 \mathrm{eV}=1.60^{-19}$ Joule

The world we're talking about is governed by quantum mecanics

$$
\mathrm{P}=\mathrm{h} / \lambda \quad \text { Particle/Waves } \mathrm{h}=6.6218 \times 10^{-34} \mathrm{~J} \text { oule sec }
$$

The world we're talking about is governed by relativity

$$
E=m c^{2}
$$

$$
\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}
$$

Probe the underlying structure of matter

Production of new particles

$p=h / \lambda$ (towards the smallest scales)

Quantum Mechanics	Electromagnetism (Maxwell's Theory)	Special Relativity	Gravity (Newton's Theory)

Quantum Field Theory

Physical Theories now:

Standard Model

General Relativity

The particle world: Physics of the two-infinities

Produce particles at $100 \mathrm{GeV} \sim 10^{-8}$ Joule

Temperature $\sim 10^{15}$ degrees

Condition of the Universe after $\sim 10^{-10}$ sec from Big Bang

Particles (which are very small « objects ») of high energy are instruments to go back in time (very large scales)

The number of objects having a given potential energy at the thermal equilibrium is given by

$$
n=e^{-U / k_{B} T}
$$

k_{B} is the proportionality factor linking the temperature and the thermal energy of a system

$$
\begin{aligned}
\mathrm{k}_{B} & =8.617343 \times 10^{-5} \mathrm{eV} \mathrm{~K}^{-1} \\
\mathrm{E}_{\text {thermal }} & =\mathrm{k}_{B} \mathrm{~T}, \quad \mathrm{k}_{B} \approx 1,3806 \times 10^{-23} \mathrm{JK}^{-1}
\end{aligned}
$$

Remember leV
100 MeV
100 GeV

$$
\begin{aligned}
& =1.6 \quad 10^{-19} \text { Joule } \\
& T \sim 10^{12} \mathrm{~K} \\
& \mathrm{~T} \sim 10^{15} \mathrm{~K}
\end{aligned}
$$

$10^{-4} \mathrm{sec}$ after Big Bang
10^{-10} sec after Big Bang

12 matter particles to explain all known particles !
Hadrons: any particle which undergoes the strong interaction (Nucleon : neutron and proton)

Baryons half integer spin
(ex: p =(uud))

Mesons integer spin (ex: $\pi=(u \bar{d}))$
Leptons : Any particle which does not undergo the strong interaction $(e, \mu, \tau)\left(v_{e}, v_{v}, v_{\tau}\right)$

Eementary particles

+ anti-matter!
3 forces : electromagnetism, weak interaction, strong interaction

The interactions and their mediators

Spin 1 particles

$m=0$

${ }^{0}$

80.4 GeV
W^{+}
W boson

$$
\mathrm{m}=91.2 \mathrm{GeV}
$$

Electromagnetism
10^{-2}

Strong interaction
1

Weak interaction
10^{-8}

Gravity :

negligible at the scale of elementary particles We do not know today how to quantify it

The fermions and their masses

Electron 0.0005 GeV	Muon 0.105 GeV	Tau 1.78 GeV

Anti-matter ?

To each particle one can associate an anti-particle : same mass but all quantum numbers opposite

Anti-Matter

In 1931 Dirac predicts the existence of a particle similar to the electron but of charge +e

The Standard Model of particle physics

- built in the last 40 years through interplay between theory and experiment
"It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong."
electromagnetism (QED)

Weak interaction

+ Higgs mechanism

Few
 concepts

A particle is characterized by :

- its mass
- its spin
- its charges
- its lifetime is a consequence of the above

The mass
Defined by: $m^{2} c^{4}=E^{2}-p^{2} c^{2}$

THE MASS

Invariant length of the Energy-momentum 4-vector

With $c=1 E, p$ and m are expressed using the same unity $(\mathrm{GeV} / \mathrm{MeV} \ldots)$

- When $p=0 \Rightarrow E=m c^{2}$
- When v increases $\Rightarrow E^{2}$ et $p^{2} c^{2}$ increase but their difference remains constant
- m is a Lorentz invariant

New particles production:

It is not "divisibility" !

Since c is large small mass
=
Large energy

Mass/energy

mass
energy

A particle is a lump of energy

THE SPIN

- The spin is the intrinsic kinetic momentum of a particle.
- it can be half-integer
- It determines the behavior of a given particle.
- Few examples of experimental evidences for the spin :

- Fine structure of the atoms spectral lines : each line is made of several components very close in frequency
- "Abnormal » Zeeman effect : Each spectral line is divided in a given number of equidistant lines when the atom is in an uniform magnetic field. «Anomaly» : the atoms of Z odd (ex. Hydrogen) divide into an even number of sub-level. In fact the number of levels is $2 /+1 \rightarrow$ proof of half integer kinetic momentum !
- The spin has no classical equivalent. Trying to explain it saying that the particle rotates on its own axis does not work.

> e,p,n have very different characteristics (charge/ mass/interaction) but they have the same spin : $1 / 2$

Gyro-magnetic ratio g

- The magnetic moment associated associated to the angular momentum of the electron

\quad| $n:$ unity vector |
| :--- |
| $v:$ electron speed |
| $S:$ surface |
| $1:$ intensity $=$ charge $/$ time |$\quad \vec{\mu}=I S \vec{n}=\frac{e}{\frac{2 \pi r}{v}} \pi r^{2} \vec{n}=\frac{e}{2 m}(m v r) \vec{n}$

Quantum angular momentum
hl

- Intrinsic magnetic momentum:

$$
\mu=\mu_{\mathrm{B}} \mathrm{I} \quad \text { with } \quad \mu_{\mathrm{B}}=\frac{\mathrm{eh}}{2 m}
$$

Bohr magneton

$$
\vec{\mu}=g \mu_{B} \stackrel{\vec{S}}{ }
$$

gyro-magnetic spin ratio
For fermions (Dirac) elementary particles $\mathrm{g}=2$

The spin obeys the same laws as the other kinetic momenta :

- Algebra similar as the \mathbf{L} one
- S^{2} can have the values $s(s+1) \mathrm{h}^{2} \quad(s$ can be half integer)
- And S_{z} : m with $m=-s,-s+1, \ldots-1,0,1, \ldots, s-1, s$
- One can add a spin with
- An other spin ($S=S_{1} \oplus S_{2}$)
- With an total angular momentum $(J=L \oplus S)$

A particle can have any angular momentum L but its spin S is fixed

	integer spin (Bosons)		Half integer spin (Fermions)	
	spin 0	spin 1	spin 1/2	spin 3/2
Elementary	Higgs boson	Vectors of the interactions	quarks, leptons	-
Composite	pseudo-scalar mesons (p,K..)	Vector mesons $\left(r, K^{*}\right)$	some baryons (octet)	some baryons (decuplet)

spin/statistics theorem (Pauli 1940)

Pauli's exclusion principle : two particles of half integer spin (fermions) cannot be simultaneously in the same quantum state

Pauli's principle anti-symmetry of the wave function by the exchange of 2 particles (for the fermions)

For 2 particles one in the state ψ_{a}, the other one in the state ψ_{b}, one can write :

$$
\begin{array}{|ll}
\hline \psi(1,2)=\frac{1}{\sqrt{2}}\left(\psi_{\alpha}(1) \psi_{\beta}(2)+\psi_{\beta}(1) \psi_{\alpha}(2)\right) & \text { Symmetric (bosons) } \\
\hline \hline \psi(1,2)=\frac{1}{\sqrt{2}}\left(\psi_{\alpha}(1) \psi_{\beta}(2)-\psi_{\beta}(1) \psi_{\alpha}(2)\right) & \text { Anti-symmetric (fermions) }
\end{array}
$$

If 2 fermions are in the same state $(\alpha=\beta)$ their wave function is 0 ! This problem does not exist for bosons which can occupy the same state (ex. supraconductors).
This can be generalized for a larger system of particles.

Helicity

- Particle of spin \vec{S}
- Direction of the momentum $\vec{n}=\frac{\vec{p}}{p}$
- Helicity:

$$
\Lambda=\vec{n} \cdot \vec{J}=\vec{n} \cdot(\vec{L}+\vec{S})=\vec{n} \cdot \vec{S} \text { since } \vec{p} \cdot \vec{L}=\vec{p} \cdot(\vec{r} \wedge \vec{p})=\overrightarrow{0}
$$

- $2 S+1$ eigenvalues of $\Lambda:-S \leq \lambda \leq+S$

Right-handed particle

Left-handed particle

