Lifetime and width of a particle

Unstable particles

A particle can decay into few (n) decay channels i

The transition rate for each *i* can be computed : Γ_i

Starting with N particles, the number dN which decays during dt is

 $dN = -N \sum_{i=0}^{n} \Gamma_i dt = N \Gamma dt$ $\Rightarrow N(t) = N(0)e^{-\Gamma t} = N(0)e^{-t/\tau}$

Definition : branching ratios: $BR_i = \Gamma_i / \Gamma$ $\Sigma_i BR_i = 1$

Lifetime and width

A set of identical unstable particles : measurement of their mass \Rightarrow range of values with a width Γ

$$\Rightarrow \quad \Gamma c^2 = \frac{\hbar}{\tau} \quad \text{uncertainty in the rest energy} = \text{rate of its decay}$$

The faster the decay, the larger the uncertainty of on mStable particle \leftrightarrow well defined mass state Schrodinger Eq. (free particle with an energy E_0) : $i\hbar \frac{\partial \psi}{\partial t} = H\psi = E_0\psi$ $\psi = ae^{-\frac{i}{\hbar}E_0t} = ae^{-\frac{i}{\hbar}mc^2t}$ Stable particle : $|\psi(t)|^2 = |\psi(0)|^2 = |a_0|^2$ Unstable particle : $\psi(t) = a_0e^{-\frac{ic^2}{\hbar}(m-i\frac{\Gamma}{2})t} \Rightarrow |\psi(t)|^2 = a_0^2e^{-\frac{t}{\tau}}$

Probability to find a state of energy E

Numerically:

Lifetime	Width	
10 ⁻²³ s	65 MeV	
10 ⁻¹⁷ s	6.5 eV	
10 ⁻¹² s	0.000065 eV	

$\hbar c = 197 \text{ MeV fm}$

I	PHYSICAL REVIEW D Article Politiker to ASCIST 2015 PART A Covering particles. Fields. gravitation, and councilogy	
	Review of Particle Physics The transmission of the form The transmission of the form The transmission of the transmission Physics of the transmission Physic	
	Same	NUR

Particle	Mass	Width	Lifetime
K*	~892 MeV	~50 MeV	
π^0	~135 MeV		~ 8. 10 ⁻¹⁷ s
Ds	~1969 MeV		~0.5 10 ⁻¹² s

Numerically:

Lifetime	Width
10 ⁻²³ s	65 MeV
10 ⁻¹⁷ s	6.5 eV
10 ⁻¹² s	0.000065 eV

$$\hbar c = 197 \text{ MeV fm}$$

Particle	Mass	Width	Lifetime
K*	~892 MeV	~50 MeV	1.3 10 ⁻²³ s
π^0	~135 MeV	8 eV	~ 8. 10 ⁻¹⁷ s
D _s	~1969 MeV	10 ⁻³ eV	~0.5 10 ⁻¹² s

Computed from the measured values

Measuring widths, one is able to have information on very small lifetimes.

But how to measure the width and lifetimes?

 $K^{-}\pi^{+}$ experimental spectrum:

Search for a K- and a π^+ in the detector and computation of the invariant mass

 π^0 experimental spectrum :

 2γ reconstruction and computation of the invariant mass.

Lifetime measurement

 $\tau \sim 10^{-12} s$

This is the particle lifetime in its rest frame

In the lab frame the particle is moving with v ~ c (β ~1) \Rightarrow special relativity

Lifetime measurements: impact parameter technique

B→12

B→ 1 2

Special relativity : $L = \beta \gamma c \tau \sim \gamma c \tau$

 $\rho = L \sin \phi \sim L \phi = \gamma c \tau \phi = c \tau$

The measurement of ρ = measurement of τ

True lifetime = 1.55 ps

What we see !

For each reconstructed decay : measure ρ compute t and fill the histogram

 $e^{-t/\tau \otimes} \ G$

 $G \propto e^{\frac{(t-bias)^2}{2\sigma^2}}$

An Najan, Nov 2019

tau = 1.561 + / - 0.016

 $t=\rho/c$

tau = 1.552 + / - 0.019

Either from direct lifetime measurements or from translation of width measurements we observe a hugh variety of lifetimes!

Fermi Golden rule

Example of a spin 0 particle A decaying in B + C

 $dN = \frac{d^3 \mathbf{p}_B}{(2\pi)^3}$ When \mathbf{p}_B is fixed due to (E,p) conservation (m_A known) \mathbf{p}_c is fixed

No preferred direction
$$\Rightarrow \Gamma = 2\pi |V_{fi}|^2 \frac{4\pi p_B^2}{(2\pi)^3} \frac{dp_B}{dE_f}$$

 $|\mathbf{p}_B| = E_f/2 \Rightarrow \frac{dp_B}{dE_f} = \frac{1}{2} \Rightarrow \qquad \Gamma = \frac{1}{2\pi} |V_{fi}|^2 p_B^2$
 $= \frac{1}{8\pi} |V_{fi}|^2 m_A^2$

$$\Gamma = \frac{1}{\tau} \propto \left| V_{fi} \right|^2 \propto \text{coupling constant}^2$$

$$-\Sigma \rightarrow n\pi \sim 10^{-10} \text{ sec}$$

$$-\Sigma^{0} \rightarrow \Lambda \gamma \sim 610^{-20} \text{ sec}$$

weak

 Δ (uud) M~ 1230 MeV/c²

Both Δ and Σ decay into $n\pi$

 Σ (uus) M~ 1190 MeV/c^2

Same final state and very similar phase space !

$$\frac{\tau(\Delta \to n\pi)}{\tau(\Sigma \to n\pi)} \approx 1?$$

Measurements:
$$\frac{\tau(\Delta \to n\pi)}{\tau(\Sigma \to n\pi)} \approx \frac{10^{-23}s}{10^{-10}s}$$

$$\Gamma \propto \frac{1}{\tau} \propto |M|^2 \propto \sim |\text{coupling constant}|^2$$

$$\frac{\tau(\Delta \to n\pi)}{\tau(\Sigma \to n\pi)} = \frac{10^{-23} \sec}{10^{-10} \sec} = \left(\frac{\alpha_W}{\alpha_s}\right)^2$$

$$\frac{\alpha_W}{\alpha_s} \sim 10^{-6}$$

~same phase space

