Standard Model

Can we see the particles vectors of the interactions?

The photon ?

Can we see gluons?

Can we see W and Z⁰?

 $u\overline{d} \rightarrow W^+$ $u\overline{u}, d\overline{d} \rightarrow Z^0$

Missing in the detecctor

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\ell}p_{\rm T}^{\rm miss}(1-\cos\Delta\phi)},$$

angle between the lepton and the missing E direction

ATLAS (2017) : $Z^0 \rightarrow e^+e^-$

Weak interaction

continuous symmetries

Continuous symmetry : additive quantum number (conserved)

- space-time symmetry (translation, rotation)

For a unitary transformation T_{α} one can write $T_{\alpha} = \exp(-i\alpha Q)$ Q is called the transformation's generator

of generators = # of parameters in the transformation (eg : 3 generators for the rotation) The momentum operators are the generators of the translation

- internal symmetry (gauge symmetry : EM) : if global : quantum number conservation (eg baryonic one) ; if local : « appearance » of a vector field (the photon) see later...

Electric charge

Additive quantum number

<u>Additive quantum number</u>: is a quantity which takes discrete values and the value for a system is equal to the sum of the values of the components of the system

Analogy with translation

 $S(\alpha) = e^{-i\alpha/l^{-Q}}$ Observable : electric charge

- Symmetry operator associates to electric charge
- If $S(\alpha)$ commute with H : conservation of electric charge
- In a reaction $\{q_i; i=1...n\} \rightarrow \{q_f; f=1...m\}$ on aura $\sum_{i=1}^n q_i = \sum_{f=1}^m q_f$
- Since all the physical states have a determined charge, the effect of these operators will be to multiply all the wave function by a phase factor

 $e^{-i\alpha q/h}$ q is the Electric charge of the system

Transformation of phase or global gauge transformation

Same other additive quantum numbers are (baryonics, leptonic...). Those are also called internal symmetries

$$e^{-iq/h\alpha(\vec{x},t)}$$
 local gauge transformation if $\psi(\vec{x},t)$ satisfy Schrödinger eq
 $\psi'(\vec{x},t) = e^{-iq/h\alpha(\vec{x},t)}\psi(\vec{x},t)$ does not satisfy it !

... Local gauge transformation \rightarrow do not modify the Schrödinger eq

 For the charge particles the solution is the following : in presence of an electromagnetic field the Schrödinger eq. is modified such that

$$\frac{1}{2m} \left(-i\nabla + q\dot{A} \right)^2 \psi = \left(i\frac{\partial}{\partial t} + eV \right) \psi \qquad (*)$$

If we define

$$\psi(\vec{x},t) \to \psi'(\vec{x},t) = e^{-iq/h\alpha(\vec{x},t)}\psi(\vec{x},t)$$

$$A \to A' = A + \nabla\alpha$$

$$V \to V' = V - \frac{\partial\alpha}{\partial t}$$

The eq (*) does not change if $(\psi, A, V) \rightarrow (\psi', A', V')$

Symmetry group \rightarrow interaction (ex : local gauge invariance $\rightarrow \gamma$) $(A,V) \quad \text{of the } (A,V) \quad \text{o$ $-iq/h\alpha(x,t)$ We could state... that if we impose a local gauge invariance we have to make appearing a field. (A, V)Quantum Field If we quantize this field, it is seen as a particle Y Theory The charge is the quantum number conserved by this symmetry transformation (the value of q has to be determined : free parameter of theory) 1 boson / 1 quantum number : the charge The existence of a a local invariance $e^{-iq/h\alpha(x,t)}$ implies the existence of an

electromagnetic interaction (field V, A) proportional to the charge q (the

value of q should be determined since is a free parameter of theory !)

electroweak unification

Symmetry	Vector bosons	Charges
U(1) electromagnetism	γ	е
SU(2)	3 bosons	g, g'
U(1) _Y \otimes SU(2) Maximal parity	γ, W+, W-, Z ⁰	e, g g sinθ _w = e
interaction An N	K ajah, Nablus , Palestine, Nov 2019	10

Problem with the mass scales

- \rightarrow m_y=0
- \rightarrow but also m_w=0 and m_Z=0

\rightarrow All the particles are massless ... !

Experimentally: $m_{\gamma}=0$ (to a very good extend ... 10^{-17} ...) $m_{W} = 80 \text{ GeV}$ $m_{Z} = 91 \text{ GeV}$

Experimentally: m_e~0.5 MeV ... m_{top} ~ 170 GeV

The Higgs mechanism and the Higgs boson

- Complex doublet scalar field : the Higgs field : 3 components absorbed : masses to the W and Z.
- One remaining component : the Higgs boson
- Higgs field : it is the interaction of the elementary particles with the Higgs field which gives them masses

Its properties are predicted (spin, couplings proportionnal to masses)

But not its mass itself!

Search for it during many years

At many colliders ... a lot at LEP from \sqrt{s} = 90 GeV to 200 GeV

These couplings determine the production and decay probabilities (for a given Higgs mass)

 \Rightarrow experimental tests

Production (at the LHC)

In the proton : light quarks and gluons → small/no direct coupling to H → First produce heavy particles !

Decay (at the LHC)

LABORATOIRE EUROPÉEN POUR LA PHYSIQUE DES PARTICULES CERN EUROPEAN LABORATORY FOR PARTICLE PHYSICS

CERN/LHCC 92-LHCC/I 1 October 1992

CMS

The Compact Muon Solenoid

Pixel Tracker ECAL HCAL Muons Solenoid coil

Pixels & Tracker

- Pixels (100x150 μm²) $\sim 1 \text{ m}^2 66 \text{M}$ channels
- Silicon Microstrips ~ 210 m² 9.6M channels

for a General-Purpose pp Experiment at the

Large Hadron Collider at CERN

Drift Tubes (DT) and Resistive Plate Chambers (RPC)

2012 : discovery of the Higgs boson by ATLAS and CMS

2019 $M = 125.10 \pm 0.14 \text{ GeV}$ PDG, precision 0.1 %!

SM : couplings proportionnal to the masses of the particles

Next important step :

The Higgs potential

Higgs potential:

Fixed values in the SM:

$$\lambda_{HHH} = \lambda_{HHHH} = \frac{M_H^2}{2v^2}$$

 $V(H) = \frac{1}{2}M_{H}^{2}H^{2} + \lambda_{HHH}VH^{3} +$

Measuring λ_{HHH} and λ_{HHHH} tests the SM

Standard Model in summary

- Stron interaction
- Unification of the weak and electromagnetic interactions
- Discovery of the Higgs particle validates the Higgs mechanism hypothesis
- Still quite a number of free parameters (19), mainly in the fermionic sector
- Amazing agreement between theory and experiments in thousands of observables !

Overall summary

• Main discoveries:

- 12 elementary fermion matter particles (+ antimatter)
- Boson vectors of the three interactions
- Higgs particle
- Fundamental role played by symmetries (P, gauge symmetries)
- The Standard Model works amazingly well !

• Open questions :

- Why three families ?
- Why so different masses for the fermions ?
- No particle in the SM to explain the Dark Matter observation
- The amount of CP violation in the SM does not explain the observed matter/antimatter asymmetry of the Universe

This is not the end of the story

Q1 : unification ? more symmetries ?

An example : relate the charge of the quarks to the electron charge and the number of colors Q(d)=1/3Q(e) But:

- several additional particles (unobserved)
- instability of the proton : strong exp. constraints

Detecteur SuperKamiokande 50000 tons of water 3 .10³⁴ nuclei(protons and neutrons)

> $p \rightarrow e^+ \pi^0$ $n \rightarrow e^+ \pi^-$

lifetime>10³³ ans

Unification > 10¹⁵ GeV

(larger than the life of the Universe (1.4 10¹⁰ ans)

 v_{e}

 $rac{m{d}_r}{m{d}_g}$

Supersymetry : symmetry between fermions and bosons

But : no particles observed (yet)

Q2 : do we understand what the Universe is made of ?

Q3 : where is the anti-matter?

No evidence for the original, "primordial" cosmic antimatter:

- Absence of anti-nuclei amongst cosmic rays in our galaxy
- Absence of intense γ-ray emission due to annihilation of distant galaxies in collision with antimatter

Equal amounts of matter and anti-matter

$$N_{Barvons}/N_{Photons} \sim 6 \ 10^{-10}$$

Sakharov conditions :

- Baryon number B violation.
- C-symmetry and CP-symmetry violation.
- Interactions out of thermal equilibrium.

a lot of photons

THANK YOU FOR YOUR ATTENTION !